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AbbsIracL Recently developed non-perturbathe density-functional theories of freezing 
are applied to Ihe classical onecomponent plasma (ow). We consider the modi6ed 
weighteddensily approximation ( M W ~ )  of Denton and Ashcmft and the generalized 
effective-liquid approximation (GEIA) of LuUko and Baus. It is shown that both the 
MWDA and the GELA completely tail to predict freezing of the classical OCP in contrast 
to  their reasonable success for the quantum freezing of the e lecmn jellium: the MWDA 
does not improve mer the secondorder theory (SOT) and the GELA is much WOE. A 
semimpirical  analysis is made of how and to  whal wdent the G U A  must be modified 
for the classical OCP: in this analysis the SOT is used for the variational liquid-like solids 
and the Monte Carlo mul l s  are used for the stable (or metaslable) BCC solids. I t  is 
found that the MI0 effective liquids, which are assumed to be equivalent in the GEM. 
must differ by about 10% in density from each other at the freezing point. 

1. Introduction 

Since the pioneering work of Ramakrishnan and Yussouff [l], the density-functional 
theory (DFT) has been used as a uscful tool in the study of the liquid-solid phase 
transition [2-51. Even the simplest version of the theoj ,  which involves a second- 
order density-functional expansion of the non-uniform solid free energy around a 
uniform liquid free energy, gives a reasonable prediction of the freezing properties 
of hard spheres [I, 61. On the basis of this encouraging result, the theory has been 
extended to other systems interacting via softer potentials, but it gives increasingly 
worse results as the potential becomes softer [7] and completely fails for Coulombic 
systems [S, 91. For these systems, the inclusion of the third-order term seems essential, 
as shown explicitly in the case of the classical onecomponent plasma (OCP) [IO]. 
However, it is also found that the second- and third-order terms are comparable near 
the freezing of the oCP [lo] and that the inclusion of the third-order term seemed to 
worsen the results for hard spheres [ll]. These results suggest that the convergence. 
of the usual perturbation series is not sufficient even at the third order. Recently, 
Lutsko and Baus [I21 proposed a different type of perturbation theory that provides 
successful predictions for the freezing of soft spheres including the OCP. This theory 
is based on thermodynamic perturbation theory [13], which has been proved to give 
accurate descriptions of the structural and thermodynamic properties of fluids. 

In recent years, several non-perturbative DFTS or so-called weighted-density- 
functional theories have also been proposed [14-191 to circumvent the convergence 
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problem of the usual perturbative approach. While these theories generally give good 
results for the freezing of hard spheres, they more or less fail to predict the freezing 
of soft-core systems such as those interacting via the Lennard-Jones, inverse-power 
and Yukawa potentials [ZO, 211. Since all of these non-perturbative ~ p r s  are based 
on ad hoc and therefore uncontrollable approximations, there is virtually no means 
of systematic improvement, although some attempts have been made to clarify the 
reason for the dispersed results of these theories [22, 231. 

The present work is one such attempt for the OCP and we are primarily concerned 
with the generalized effective-liquid approximation (GELA) of Lutsko and Baus [19], 
which is viewed as the complete theory for the freezing of hard spheres. We also con- 
sider the modified weighted-density approximation (MWDA) of Denton and Ashcroft 
[17] for comparison. Recently, these theories have been extended to the electron 
jellium at T = 0 and found to give reasonable results for the quantum freezing 
(Wigner crystallization) [XI. The formulations of the GEIA and the MWDA for the 
classical OCP are similar to those for jeUium and are easily obtained. We use these 
formulations to show how these theories can (actually, cannot) predict freezing of 
the om. Then, we make detailed analyses of how and to what extent the CELA must 
be modified for the om, which is the main purpose of this paper. 'R, implement 
these analyses, we adopt a semi-empirical approach with the use of the second-order 
perturbation theory (SOT) for the variational liquid-like solids and the Monte Carlo 
(MC) results for the stable (or metastable) Bcc solid phase. One should note that 
OUT aim is not to propose a new theoty but to show the limitations and possible 
modifications of the existing theories. 

The paper ir organized as follows. In section 2, we summarize the relevant results 
of the DFT of the non-uniform OCP and present the formulations of the GELA and 
the MWDA, which have been originally formulated for non-Coulombic systems [17, 191 
and extended to the electron jellium [24]. The results of applications are presented 
in section 3, where we show how these theories fail to predict freezing of the OCP 
and how the GELA must be modified. The final section is devoted to the summary 
and conclusions. 

2 Density-functional theories of the non-uniform OCP 

me om is a system consisting of point-like charged particles (which we call ions 
hereafter), with the electric charge Ze, embedded in a uniform neutralizing charge 
background. Let p , ( ~ )  be the one-particle density of a non-uniform (solid) OCP in 
equilibrium at the inverse temperature p = I /k ,T .  Then, the total charge neutrality 
condition requires that the charge background density is equal to Zep,, where ps is 
the spatial average of p,(r), Le., 

V being the volume of the system. 
The quantity of interest in the following is the intrinsic (Helmholtz) free energy 

F of the system, which is the unique functional of p,(r) according to the DIT [251. 
Far the ocp, it is convenient and common practice to write F as 
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Here, G is the so-called non-Coulombic part of F and E, is the electrostatic energy 
given by 

where Ap,(r) = p , ( r )  - p, and V(T) = ( Z e ) 2 / r .  The non-Coulombic part G 
consists of two terms, 

G[psl = Gid[&l t Gex[&l (2.4) 

where G, is the ideal-gas contribution and G,, the excess term due to the inter- 
particle interaction. The explicit expression for G,, is known and given by [25] 

f iGid[ps l  = 1 d r  ~s(r){lnlA~ps(r) l  - 1) (2.5) 

where A = ( 2 ~ 1 ? ~ / m k ~ T ) ' / ~  is the thermal de Broglie wavelength, m being the 
particle mass. Therefore, the final goal in the density-functional formalism is to devise 
an approximation scheme for calculating G,. 

22. Sezond-order perlurbalion theoty (SOT) 

The simplest approach to this goal is the functional expansion of G,, in the densiry 
difference S P , ( r )  = ps(r)-Pr, where pr is the density of a uniform (liquid) reference 
OCP. Although pr can be chosen arbitrarily, the simplest and most convenient way 
may be to put p, = p., where p, is given by equation (21). Then, to second-order 

p , V )  is given by 
in Ap,(r) = Pdr) - P,, as in the original work U], Pgex[~.1 = PG,,[P,]/N ( N  = 

where g&,) is the excess free energy per particle of the uniform om with density p, 
and CN, is the non-Coulombic part of the direct correlation function (DCF) defined 
by 

cNC(lr - ''1; P s )  = - { 6 2 P G e x ( P s l / 6 p ~ ( r ) 6 p ~ ( r ' ) } l p , ( r ) = p . .  (2.7) 
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22 Generalized effective-liquid approximation (GEU)  

Moroni and Senatore 1241 formulated a modified version of the G E M  for jellium, 
which is appropriate to treat the Wigner crystallization that takes place at extremely 
low density. Wr the classical Om, however, the original formulation of Lutsko and 
Baus [19] may be followed. 

For the OCP, it is convenient to start h m  the definition of C,,, the non- 
Coulombic part Of the DCF: 

CNC(',r'; [ f s l )  = -s2PG,, l f ,1/6f , (r)sf . (r ' ) .  (2.10) 

Equation (2.10) can be converted into the integral form by parametrizing the density 
as p x ( r )  = X P A T ) :  

The total excess free energy per particle is then given by 

(212) 

Then, we follow Lutsko and Baus 1191 and consider the mapping of the unknown 
free energy itself onto that of an effective liquid with density b1 (themtodynamic 
mapping): 

Dfexlf51 = P f e x ( P 1 ) .  (2.13) 

The density p1 defined by this mapping is in general a functional of p , ( r ) ,  Le. 
& = &[p,]. Another mapping considered by them is based on the observation that 
only the unknown of equation (212) is the DCF of the non-uniform (solid) om, and 
it is defined by (structural mapping) 

(2.14) 

where CNc( I+ - r'l; &) is the non-Coulombic part of the DCF of another effective 
liquid with density ,&, which is also a functional of p , ( r ) :  p z  = & [ p S ] .  Then, 
combining equations (2.12)-(214), we have 

(2.15) 
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In the second step of equation (215), we have used the fact that Pf,[p,] can be 
formally written as 

Pf,.[~,l = h / d r  /d r ’  /IdX 0 /’dX’ 0 A P ~ ( ~ ) A P ~ ( ~ ’ ) P Z I ( ] + - - ~ ’ I ) .  (216) 

For a later reference, we also note the identity 
1 

i l d X  L ’dX ’  h(X’) = dX (1  - X)h(X) 

valid for any function h( A). 
Up to this stage, we have done nothing except define two effective liquids with 

density b1 and f iz for a given pa(.). The basic assumption made in the GELA is that 
the above two effective liquids are identical [191, ie., 

Bl[P,l = MP.1 = d P J .  (2.18) 
With this assumption, equation (2.15) becomes an implicit equation for p[p,], which 
can be solved to give the solid excess free energy (given by either side of equation 
(2.15)). This completes the formal translation of the G E M  originally developed for a 
non-Coulombic system into that for the OCP. 

The method of solving equation (215) with the assumption (218) has been given 
by Lutsko and Baus [19]. The starting point of this method is to change p, ( r )  to 
Xp,(v) in equation (215), which results in 

XPf,,(dXP,l) = - $ / d r / d r ‘  / 0 da/uda’CNC(Iv 0 --r’l;t4a’ps1) 
x 

 aid^ N /dr‘  d ~ J D ~ d a ’ A ~ ~ ( r ) n p ~ ( . ‘ ) C ( l r - r ’ ) ) ; I b [ o r ‘ p , ] ) .  

(2.19) 
Then, we expand ~[XP,] as 

P[XP,l = Xfi{l  + a,(X - 1) + a,(X - 1 ) 2  + . . .) (220) 
and substitute the expansion into equation (2.19). The successive differentiations of 
both sides of the resulting equation with respect to X yield a sequence of equations 
which, when X is set equal to 1, can serve to determine fi  = b[pJ and { a n }  = 
{ u n [ p e ] }  in equation (2.20). A few of these equations are given by 
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where f:.(b) = ?Ifex($)/?Ib, f&(fi) = a2fex (p ) /?Ipz ,  and eNC(O;b) is the long- 
wavelength limit of the Fourier transform of CNc(r; 6): 

&(%fi) = J d r ~ N C ( r ; b ) e x p ( i q . r ) .  (2.22) 

In equation (2.21a). which is nothing but equation (215) assuming (Z.18), we have 
used the result (see equation (216) of Lutsb and Baus 1191) 

cNC(T; X’b) = ( p s / b ) P f e x ( b ) .  ( 2 3 )  
In the first step of this equation we have used that p[Xp,] = 0 for X = 0, ,6[Xp,] = p 
for X = 1 and the integration over the coupling constant is path-independent in the 
m e  of a uniform density. 

23. Modifid weighled-dmiy approximation (MWDA) 

The MWDA of Denton and Ashcroft [17] was rederived by Laird and Kroll [21] in a 
different manner. This derivation is physically more transparent than the original one 
of Denton and Ashcroft and can be easily extended to a Coulombic system. Moroni 
and Senatore [24] actually made such an extension to derive the MWDA for jellium. 
The correspondence of this result with that for the classical OCP is immediate, once 
the quantum direct correlation function K ( r ;  p )  is replaced by P-’C(r; p )  and the 
exchangecorrelation energy cxs(p)  by f,(p). Nevertheless, it may be useful for 
completeness and for later references to repeat its derivation for the OCP. 

One starts kom the integral form of the definition of C$i, the non-Coulombic 
part of the one-body DCF [21]: 

Similarly, converting the relation 6C$(r; [ps])/6ps(r‘) = CNC(r,r’; [p,]) into an 
integral form, one has 

where the integration path is parametrized as 

P ~ T )  = b t X’lp,(r) - bl 
,6 being the density of a uniform liquid specified later. Then, substitution of equation 
(225) into (2.24) yields 

with 
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At this point, the unknown functional cNNc is approximated by an as-yet-unspecified 
homogeneous two-point function X 

- 
CNC(+,r';Ipsl)UX(l+--F'I;b). (229) 

Then, one requires that the resulting approximate excess free energy functional, which 
is denoted as FzwDA[pJ, satisfies the condition (thermodynamic mapping) 

FEWDAIPsl = Nf,x(P). (230) 

This condition implies that the sum of the second term on the right-hand side (RHS) 
of equation (2.27) and the electrostatic energy pE,[p,] vanishes, which yields 

p =  p,+ l / d r  N /dr'Ap,(+)Ap,(r')w((r -+'(;a) (231) 

with 

w(p; a = D/m; @)I{X(v; 6)  - P.(.)l (232) 

where z(0; 6 )  is the long-wavelength l i t  of the Fourier transform of X ( r ;  p ) .  
Finally, as in the original derivation [17J one requires that the approximate 

free energy functional F2WDA[ps] produces the DCF exactly in the limit of uniform 
density, Le., 

(233) MWDA {PE, [ P . I / ~ P , ( T ) ~ ~ ~ ( T ' ) ~ I ~ , ( ~ ) = ~  = -c(l+ -+'I; P )  

for any p. A unique specification of the weight function w in equation (231) follows 
from this condition [17, 241: with p = p in equation (233), one has 

w(p; a) = -[1/2Pf,',(P)IIC(7-; b) + (P/V)Pf&(P)}. (234) 

Here we note the compressibility sum rule for the ocp: 

where xT is the isothermal compressibility. Using this sum rule, it is easy to show 
that the result of equation (234) corresponds to the choice 

X ( p ;  a = a) + ( b / V ) P f & ( b )  (2%) 

for the two-point function introduced in equation (2.29). 
We note that equation (229) is now the basic assumption in the MWDA for 

Coulombic systems and could be aucial in determining the quality of the m k  ?he 
corresponding assumption for a non-Coulombic system leads to a normalized weight 
function [21], which was the basic assumption in the original derivation of the MWDA 
[lq: for a Coulombic system, the weight function w is not normalized (see equation 
(2.32) or (2.34)) and the original derivation cannot be followed. 

Now, substitution of equation (2.34) into (2.31) yields 
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Gwen p,(+), equation (2.37) can be easily solved for /j and the solid excess free 
energy is obtained from equation (230). 

The requirement (2.33) implies that the MWDA exactly reproduces the SOT result 
in the limit of uniform density, where Ap = p -  p, clearly vanishes. It is easy to 
show that equation (237) is in fact consistent with this implication. 'Ib show this, we 
consider a situation where the density is nearly uniform and so A@ is small. In such 
a situation, from equation (237) we have 

6 -  P," P A f 2 T I P f : , ( P s )  (238) 

where pAf,","' is the secondader term of the perturbation series and given hy the 
second term (including minus sign) on the RHS of equation (28). Using equation 
(238), the solid free energy Pf,,[p,] = P f e , ( p )  is obtained as 

Pf , , (B)  L* Pf..(P.) + P f & b S ) ( 6 -  P.) 3 P f e x ( d  + Oaf,, 
Equation (239) holds exactly in the limit of uniform density and is nothing but the 
SOT result given by equation (2.8). The perturbation series does not seem to converge 
rapidly near freezing [IO], and we may expect some difference between the MWDA 
and the SOT. 

We can also show the relation between the MWDA and the GEL4 by rewriting 
equation (237) as 

(239) SOT. 

2 b P f : m  + (P , / i J )P*Pf : : (b )  
1 

= - ( P . / P ) & c ( O ;  P )  - 1 d r  1 dr' A p p ( r ) A p S ( ~ ' ) C ( I +  - +'I; P )  
(240) 

where we have used the compressibility sum rule (235) .  The MWDA equation (240) 
results from the GEJA if we disregard equations (22la)  and (2.216) and impose 
additional constraints, ul = ( p s / p ) 1 ~ 2  - 1 and u2 = -2a,, in equation (2 .21~).  This 
correspondence between the MWDA and the GELA for the OCP is the same as that 
for a non-Coulombic system 1191, hut it does not necessarily mean that these theories 
produce similar results for the freezing of the oCP as in the case of hard-sphere 
freezing [19]. 

3, Applications: analysis of the c m  

3.1. Prescriptions for  the liquid ocp and crystal densily 

The knowledge of the free energy and structural functions of the uniform liquid is 
a prerequisite in the theory of freezing. For the 00, a very accurate expression lor 
the free energy is available from the MC simulations [26]: 

p f , , ( p )  = u r + 4 ( 6 r 1 / ~ - ~ / r 1 / 4 ) + d i ~  r-[a+4(b-c)t0.4363] 1 < r < 160 

(34 
where r k the plasma parameter defined by r = p'(Ze)2/R,, R, being the ionic 
sphere radius defined by (47r/3)Rz = l / p ,  a = -0.897744, b = 0.95043, c = 
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0.18956 and d = -0.81487. With this result, together with the MC result for the 
BCC solid free energy (see equation (3.14)), the melting occurs at r E 178 [26]. 
Slightly different and probably more accurate values of a, b, c and d in equation 
(3.1), which predict melting at r U 180, have been obtained by Ogata and Ichimaru 
1271. But we did not use this result for consistency with the prescription for the DCF 
of the on, which is given below. Equation (3.1) may be safely used beyond r = 160, 
probably up to r N 180. For r < 1, we used the expression 

pf&) = -0.6244r~/~ + o.2i26r2 - 0.0245r~/~ r < 1. (3.2) 

The coefficients in this expansion were determined such that pf, and its fust and 
second derivatives are continuous at = 1. The excess internal energy pu,,(p) 
obtained from equation (3.2) is in good agreement with the MC result for r < 1 [XI. 

The m of the liquid om was calculated in the modified hypernetted-chain 
(MHNC) approximation of Rosenfeld and Ashcroft [B], in which the hard-sphere 
bridge function in the PercusYwick approximation was fitted to the compressibility 
obtained from equations (3.1) and (3.2) [29]. The DCFS calculated in this way are 
in good agreement with the MC results. The DCFS at all values of r(r < 180) are 
involved in the applications of the GEL4 (see equations (3.9a)-(3.9~)). lb avoid the 
di6iculty of repeating timeconsuming computations for solving the MHNc integral 
equation, we used the interpolation scheme with the use of the DCFS tabulated at 
the interval of A r  = 5. This scheme was proved to be vely accurate because of 
the scaling property of the ocp (i.e., C(r;  p) is nearly proportional to r for a given 
X = r /  R,). 

In this work we used a sum of the Gaussians peaked at each site of a periodic 
lattice for describing the solid density p , ( r )  [30]f 

p , ( r )  = p s x e x p  
i 

(3.3~) 

(3.36) 

where the { E i ]  denote the Bravais-lattice vectors for a chosen qs t a l  lattice and 
{G,] the corresponding reciprocal lattice vectors (RLV). With the use of the above 
p , ( r ) ,  the variational principle for the Gee energy F reduces to a minimization of 
F with respect to the Gaussian width parameter a. Another popular method is 
a general Fourier decomposition of p,(r), in which the amplitude of each (non- 
symmetry-related) Wurier component is treated as an independent parameter. This 
method has the ability to explore more realistic crystal density, but we avoided the 
use of this method because of the inconvenience in our analysis. The Gaussian and 
Fourier methods have been compared in the study of the freezing transition of the 
hard-sphere and Lennard-Jones systems and were found to give essentially the same 
results for the phase diagram [31]. 

For p s ( r )  given by equation (3.3), we can easily obtain the expression for the 
ideal-gas contribution pgid = pGid/N [16, 191, which we conveniently write as 

PL&d[ps] = PSid(ps) f PAgid[psl. (3.4) 
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Here, pgid(pe) is the ideal-gas free energy of the uniform liquid, 

/3gid(pn) = In(A3ps) - 1 = 31n r. - 1 + In (2 IF'/') + $ In(kgT)Ryd 

by 1191 

(3.5) 
where ra b the plasma parameter corresponding to p. and (kB7')Ryd is the energy 
k,T in units of the atomic Rydberg. The deviation from the uniform part is given 

+ - d r  exp(-ara)ln " I  7r 

This expression was used for aR,Z > 1. We performed numerical calculations to 
evaluate the last term on the RHS of (3.6) and found that this term is negligibly small 
for a@ > 20 [16]. For CY@ < 1, we used an approximate result [19] 

where NI is the number of the nearest neighbours in the reciprocal space and G, is 
the smallest RLV. 

With the prescriptions for the uniform liquid OCP and crystal density ps(r), the 
freezing properties can be easily obtained in the approximations discussed in the pre- 
vious section. We fmd it convenient to work in reciprocal space using equation (3.36) 
and to make use of the scaling properties of the om, Le., pf,,(p.) = fex(rs)  and 
p s e (  G,, ps) = D( Ir;. , r,) with uj = G, R,. Here and hereafter, R, and r8 refer to 
the ionic-sphere ladius and plasma parameter corresponding to p.. 

The excess free energy of the solid, pf,,[p.] = f eX(r , ;aR: ) ,  in the SOT (equa- 
tion (2.8)) is then written as 

pASid[PsI = 4 Niexp(-G?/2") (3.7) 

where the prime on the summation indicates the exclusion of the term with Yj = 
O(Gj = 0). 

The GELA equations (221a)-(221c) become 

x B(%(A);f(X)) (3%) 
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In these equations, &(p) and fLk(p) now represent the derivativas with respect 
to p, %(A) = GjRs(X) = q[rs/?(X)], and &(A) and ?(A) are the ionic- 
sphere radius and plasma parameter, respectively, corresponding to p ( X )  = p[Xp,] 
(equation (2.20)). In equation (3.9~) we used the identity (2.17). W e  retained up to 
the term with a, in the expansion of equation (2.20) (third-order GELA [19]) and used 
the variable U = rather than X in the numerical integrations over the coupling 
constant in equations (3.9a) and (3.96), which is more efficient since f l (%(X);  p(X)) 
is nearly proportional to v. 

The MwDA equation can be obtained from equation (3.9~) hy imposing the con- 
straints al = (p , /p)1 /2  - 1 = (l's/f')3/2 - 1 and a2 = -2a1, as discussed at the 
end of the previous section. 

3.2 Results in rhe SOT, GELA and MWDA 

Figure 1 shows the results of the free-energy difference Af calculated for the BCC 
crystal in the three approximation schemes: Af is defined by A.f = pAf[p.] = 
P f [ 4  - Pf(p. ) ,  where f = gid + f,,, and given by 

Af(rs; a%) = AGid.(aR;) + A i x ( r s ;  aRz)  (3.10) 

where A&,,(aRZ) = pAg,[pJ (equation (3.4)) and Af,,(r,;aR;) = 
fex(r*; a ~ ; )  - fex(rs) with fex(rs; a~:) = f&) in the GEM and the MWDA. 
Note that no volume (or density) change on freezing is considered in the case of the 
OCP. 

As we have already mentioned in section 1, all the theories considered in this work 
completely fail to predict freezing transition of the OCP: Af has no local minimum 
as the function of aR:, showing no tendency to freeze into even a metastable solid. 
Furthermore, of the three theories, the GEL4 is the worst and the SOT the best, 
which is quite in contrast to the case of hard spheres. In their SOT, with the use 
of the Fourier method, Rovere and %si [8] proposed to ignore the density-wave 
contributions with G, (the second-smallat RLV of the BCC lattice), which shows 
strong rigidity against freezing into the Bcc lattice. Similar and physically acceptable 
results are also obtained in our Gaussian method if we ignore that Fourier component 
of p , ( r )  in equation (3.8), and such a procedure, though difficult to confirm by direct 
calculation, could be interpreted as simulating higher-order terms. A similar analysis 
was made by Iyetomi and Ichimaru [lo] in their third-order perturbation theory, which 
itself predict freezing at r 140: they showed that their theory can predict freezing 
at r zz 180 if one retains only 22% of the density-wave contributions with G, in the 
second-order term. These analyses suggest that the convergence of the perturbation 
series is not sufficient even including the third-order term and, in fact, the second- 
and third-order terms are comparable at freezing [lo]. 

The stability of the solid phase in the GELA unphysically lowers as rs increases, 
which is another serious aspect of the failure. The failure of the GEM can be 
understood in terms of equation (337): the second term (including minus sign) on 
the WS of this equation is positive and very small (even for large OR:) and the 
resulting i. is only slightly smaller than rs, producing a solid excess free energy' 
fex(rB;aRz)  = fex(F) slightly smaller in magnitude than the liquid free energy 
fex(I'J. As the result, the free-energy difference Af is essentially determined by 
the ideal-gas contribution A&,, which is independent of rs and increases with aRZ 
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Z The Gaussian widlh parameter depen- 
dence of 7 at r, = 180, which is defined Ly equa- 
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(broken) curve, filled lo the SOT value ol I) a1 
crRZ = 6(aR2 = 4) and lo the MC value (filled 
circle) wing the parameVized function given @ 
equation (3.5).  

(see equation (3.6)). These unfavourable features of the GELA are not specific to the 
present prescriptions for the liquid DCF or p,(.) but must be ascribed to the basic 
assumption of this theory. 

The results for A i  in the MWDA and in the SOT are close to each other in the 
range of small aRZ, which is not accidental but a general attribute of the MWDA as 
discussed in the previous section (see equation (239)). The deviation of the MWDA 
result for Af from the SOT result increases with OR:, but this deviation is not in 
such a direction as to be an improvement over the SOT. Thii result suggests that 
higher-order terms are not properly incorporated, at least in principle, in the MWDA 
in spite of its reasonable success for the freezing of hard-spheres. This unfavourable 
feature of the MWDA may also be traced back to the basic requirement (equation 
(2.29)) of this theory. 

3.3. Ana&sis Of the GEL4 

The failures of the GELA and MWDA for the OCP suggest that the basic assumptions 
(or requirements) of these theories must be abandoned. In a circumstance in which it 
is diacult to establish a new and more reasonable assumption from purely theoretical 
considerations, an immediate task may be empirical. The GELA is easier to tackle 
than the MWDA and we are concerned with the former in the following analysis. 

The only assumption of the G E M  is that the two effective liquids onto which the 
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solid is mapped are identical (equation (218)). In our variational approach with the 
use of equation (3.3), the SOT may be a good approximation for liquid-lie solids, i.e. 
the ones with small width parameters cy, for which we may expect a rapid convergence 
of the perturbation series. We determined plasma parameters f ,  and f ,  of the two 
effective liquids with density fil and &, respectively, by setting both sides of equation 
(215) equal to the solid excess free energy calculated in the SOT (equation (3.8)). 
In the calculations of the second term on the RHS of equation (215) (or (3.9~) with 
f = f2), we used the approximation 

&(A) = x.6, or f , (X) = X 1 / 3 f ,  (3-11) 

which corresponds to the so-called first-order G E M  [19] and was proved to give 
accurate results for liquid-lie solids with small aRZ. We actually confirmed that we 
gain very little in using the full expansion (2.20) for the OCP and so equation (3.11) 
can be used as a good approximation, especially for small aR:. 

The values of f ,  and f ,  determined in this way are larger and smaller, respec- 
tively, than re and their deviations from increase with aR:. 'RJ establish the 
relationship between f ,  and p2, both being functions of aRZ, we used the quantity 
defined by 

q(uR:) = (f ,  - f,)/fl = 1 - f , /f l .  (3.12) 

The values of q obtained from the SOT are shown in figure 2 (open circles). If we use 
this relation between f ,  and f',, together with the approximation (3.11), in equation 
(2.15), we recover the result of the SOT shown in figure 1. We also note that 17 = 0 

In the absence of any theory to estimate q for large aR:, we used the MC results 
for the solid free energy. 'Ib make a connection between our variational approach and 
the MC simulations, we used the L i n d a "  ratio y, which is defined as the mean- 
square displacement divided by the nearest-neighbour distance. For the parametrized 
pa(.) given by equation (3.3), y is given by 

for the G E U  

yz = ; ( 3 / ~ ) ~ f ~ / a R :  (3.13) 

for the BCC lattice, which is the stable structure of the solid om. The MC results for 
y have been given by Pollock and Hansen [32] and we used these results to obtain 
corresponding values of aR:. Far the value of cyR: determined in this way at each 
rs we determined f1 and f', by setting both sides of equation (2.15) plus thc ideal- 
gas free energy pg,d[p,j (equation (3.4)) equal to the MC free energy pfMC(ps) of 
the BCC solid [%, 321: 

pfMC(ps)  = +Beer. + In rs - 1.8856 - 1613/r: t h(kBT)Ryd (3.14) 

where cyBCC is the Madelung constant of the BCC lattice, cyBCC = -1.791813. In 
the calculations of the second term on the RHS of equation (215), we also used the 
approximation (3.11). The resub of these calculations are summarized in table 1. 
The v a l w  of q determined in this way are about 20% largcr than those determined 
by the SOT (see figure 2). 
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Tnbk L Parameters of the fa solid ocp and at the effective liquids in the modised 
GBW: 7. the MC Iindemann tali0 [32]; OK', the mmponding Gausian width parameter 
(equaIion (3.13)fi and rz, plasma parameters of the &ecliw liquids onto which solid 
OCP is mapped (see the lext); T), de6ned bj quation (3.12); A and B, the parameters 
in equation (3.15) Blted to the MC value of q in this tame and to the ST value a1 
e&z = 6 (lhe values in the parenthews a Blted to the 501 n l u e  at eR: = 4). 

1x1 a m  17.32 ~2.69 148.06 a m  0.0560 10.61 
163 0.1620 18.48 162.85 157.92 0.0303 0.0538 10.62 
170 0.1571 19.65 173130 167.78 0.0302 0.0519 10.64 
180 0.1526 20.82 183.15 177.65 0.O.W 0.0501 10.66 

To establish the relation between f ,  and f ,  that can be used in the whole range 
of aRi, we used a parametrized function of the form 

q(aR.2) = Aexp( -B/aRz) .  (3.15) 

The parameters A and B in this equation were fitted to the MC value at the corre- 
sponding aRZ (see table 1) and to the SOT value at a small aR:, say aR2 = 6. The 
results of this fitting for Ta = 180 are shown in figure 2 (full and broken curves). 
The use of equation (3.15) is based on the obsewation that the SOT results for q can 
be fitted to this equation with high accuracy. 

With these results for q(aR:), we can solve equation (2.15) to obtain f ,  (or f,) 
without using the assumption (2.18). If any purely theoretical prescription could be 
@en to calculate such an q(aR.2). the theory would be called a modified GEM: for 
simplicity, we use this terminology hereafter. We used the approximation (3.11) to 
solve equation (215) for the consistency with the procedure used to determine f t  
and f,. The bee energy difference Af (equation (3.10)) calculated in this modified 
GELA has now a local minimum near the value of aR,2 fitted to the MC LindemaM 
ratio, showing the tendency to freeze into the BCC solid (see figure 3). The freezing 
ooxrs at r, 180 in agreement with the MC simulations [26, 271, although the 
Gaussian width or Lindemann ratio at freezing slightly deviates from the prescribed 
(and expected) value, shown by vertical arrows in figure 3. We note that, with our 
fitting procedure, our calculations exactly reproduce the MC solid bee energy at the 
value of aRZ fitted to the MC Lindemann ratio, but the calculated A j  does not 
necessarily have a (local) minimum at that value of OR:, as it does not for large rr 
(see figure 3). The freezing properties such as the position of the local minimum 
of Af or the Iindemann ratio calculated in our modified GELA are very sensitive 
to the interpolated (or extrapolated) q(aR:). In fact, the use of slightly different 
values of A and B in equation (3.15) produces a substantial difference in the freezing 
properties as demonstrated for = 180 in figure 3. These results suggest that it is 
very dif6cult to establish, from purely theoretical considerations, a relation between 
the two effective liquids in the modified GEM. 

We have considered only the BCC structure in this work because our analyses are 
not sufficiently advanced to allow discussion of the relative stability of various crystal 
structures. 
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F@R 3. The free-energy difference AF (equa- 
tion (3.10)) calculated in the modified G E u l  Full 
curves obtained using fitted q(e&') (equation 
(3.15)) whose parameters A and B are given in 
table 1; bmken a w e :  the result for r, = 180 ob 
tained by using slightly ditferent q(o&') specified 
by the values of A and B in lhe parenlheres in 
table 1. Note that each "e (full and bmken) for 
r. = 180 corresponds to t h a ~  in Bgure 2 The cer- 
tical a" on a c h  cmve Bows the position (the 
value of U%') at which the solid kee energy is 
fitted to the MC result (see table I). 

4. Summary and conclusions 

We have studied the freezing of the OCP using the recently developed MWDA and 
GEM, which have been proved to be successful in predicting the freezing of hard 
spheres. We showed that these theories completely fail to predict freezing of the 
OCP into the BCC solid phase, which could have been anticipated from their failures 
for the soft-sphere systems [ZO, 211. The present study has been primarily concerned 
with the analysis of these failures and with possible modifications. The results of our 
analysis are summarized as in the following. 

(i) While the MWDA exactly reproduces the SOT result for the free energy in the 
limit of uniform density, it does not improve over the SOT for non-uniform densities 
in the case of the Ocp. This result suggests that higherader terms are not properly 
taken into account in the MWDA and its reasonable success for the freezing of hard 
spheres must be viewed as a sort of accident [U]. 

(ii) The formal relation between the GELA and the MWDA for the OCP is the same 
as that for non-Coulombic systems [19], but these theories give quite different results 
for the stability of the solid Om, with much worse results in the GEM (figure 1). 

(iii) It is clear that the basic assumptions in the GELA and the MWDA are re- 
sponsible for the failure of these theories and must be subject to modification. The 
modification of the GELA is easier to implement and we have made a semiempirical 
analysis of thii theory using the SOT and MC results for the solid OCP. This analysis 
has shown that the two effective liquids, which are assumed to be identical in the 
GELA, must differ from each other by about 3% in the coupling constant (10% in 
the density) near the freezing in a successful theory (modilied GELA). The analysis 
also suggess that it is very difficult to develop such a successful theory from purely 
theoretical considerations. 
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