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Abstract. Recently developed non-perturbative density-functional theories of freezing
are zpplied to the classical one-component plasma {(OcP). We consider the modified
weighted-density approximation (MwpA) of Denton and Ashcroft and the generalized
effective-liquid approximation (GELA) of Lutsko and Baus. It is shown that both the
MwDA and the GELA completely fail to predict freezing of the classical ocP in contrast
to their reasonable success for the quantum freezing of the electron jellium: the MwDa
does not improve over the second-order theory (50T) and the GELA is much worse. A
semi-empirical analysis is made of how and to what extent the GELA must be medified
for the classical OCP: in this analysis the $0T is used for the variational liquid-like solids
and the Monte Carlo results are used for the stable {or metastable) BCcC solids. It is
found that the two effective liquids, which are assumed to be equivalent in the GELA,
must differ by about 10% in density from each other at the freezing point.

1. Introduction

Since the pioneering work of Ramakrishnan and Yussouff [1], the density-functional
theory (DFT) has been used as 2 uscful tool in the study of the liquid-solid phase
transition [2-5]. Even the simplest version of the theory, which involves a second-
order density-functional expansion of the non-uniform solid free energy around a
uniform liquid free energy, gives a reasonable prediction of the freezing properties
of hard spheres [1, 6]. On the basis of this encouraging result, the theory has been
extended to other systems interacting via softer potentials, but it gives increasingly
worse results as the potential becomes softer [7] and completely fails for Coulombic
systems [8, 9]. For these systems, the inclusion of the third-order term seems essential,
as shown explicitly in the case of the classical one-component plasma (ocr) [10].
However, it is also found that the second- and third-order terms are comparable near
the freezing of the ocP {10] and that the inclusion of the third-order term seemed to
worsen the results for hard spheres [11]. These results suggest that the convergence
of the usual perturbation series is not sufficient even at the third order. Recently,
Lutsko and Baus [12] proposed a different type of perturbation theory that provides
successful predictions for the freezing of soft spheres including the ocP. This theory
is based on thermodynamic perturbation theory [13], which has been proved to give
accurate descriptions of the structural and thermodynamic properties of fluids.

In recent years, several non-perturbative DFTs or so-called weighted-density-
functional theories have also been proposed [14-19] to circumvent the convergence
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probiem of the usual perturbative approach. While these theories generally give good
results for the freezing of hard spheres, they more or less fail to predict the freezing
of soft-core systerns such as those interacting via the Lennard-Jones, inverse-power
and Yukawa potentials [20, 21]. Since all of these non-perturbative DFTs are based
on ad hoc and therefore uncontroliable approximations, there is virtually no means
of systematic improvement, although some attempts have been made to clarify the
reason for the dispersed results of these theories [22, 23].

The present work is one such attempt for the oCP and we are primarily concerned
with the generalized effective-liquid approximation (GELA) of Lutsko and Baus [19],
which is viewed as the complete theory for the freezing of hard spheres. We also con-
sider the modified weighted-density approximation (MWDA) of Denton and Ashcroft
[17] for comparison. Recently, these theories have been extended to the electron
jellium at T = 0 and found to give reasonable results for the quantum freezing
(Wigner crystallization) [24]. The formulations of the GELA and the MWDA for the
classical OCP are similar to those for jellium and are easily obtained. We use these
formulations to show how these theories can (actually, cannot) predict freezing of
the ocP. Then, we make detailed analyses of how and to what extent the GELA must
be modified for the OCP, which is the main purpose of this paper. To implement
these analyses, we adopt a semi-empirical approach with the use of the second-order
perturbation theory (SOT) for the variational liquid-like solids and the Monte Carlo
(MC) resulis for the stable (or metastable) BCC solid phase. One should note that
our aim is not to propose a new theory but to show the limitations and possible
modifications of the existing theories.

The paper is organized as follows. In section 2, we summarize the relevant results
of the DFT of the non-uniform OCP and present the formulations of the GELA and
the MWDa, which have been originally formulated for non-Coulombic systems [17, 19]
and extended to the electron jellium [24). The results of applications are presented
in section 3, where we show how these theories fail to predict freezing of the ocp
and how the GELA must be modified. The final section is devoted to the summary
and conclusions.

2. Density-functional theories of the non.yniform ocp

The OCP is a system consisting of point-like charged particles (which we call jons
hereafter), with the electric charge Ze, embedded in a uniform npeutralizing charge
background. Let p,(r) be the one-particle density of a non-uniform (solid) ocp in
equilibrium at the inverse temperature 8 = 1/kg T. Then, the total charge neutrality
condition requires that the charge background density is equal to Zep,, where p, is
the spatial average of p,(r), ie,,

1
P, = V./; dr p (1) (2.1)

V being the volume of the system.

The quantity of interest in the following is the intrinsic (Helmholtz) free energy
F of the system, which is the unique functional of p,(r) according to the DFT [25].
For the OCP, it is convenient and common practice to write F° as

Flp) = Glo + Eyle.). @2)
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Here, G is the so-called non-Coulombic part of F' and E_ is the electrostatic energy
given by

E.lp) == [ar [ar Ap,(r)Ap(+"yo(lr - #']) @3)
2

where Ap,(r) = p(r) ~ p, and v(r) = (Ze)?/r. The non-Coulombic part G
consists of two terms,

G[ps] = Gid [ps] + Gex [ps] (2‘4)

where G,y i the ideal-gas contribution and G,, the excess term due to the inter-
particle interaction. The explicit expression for G, is known and given by [25]

BGulel = [ dr o) {inlA%e,(r)] - 1) @9

where A = (27h%/mkgT)!/? is the thermal de Broglie wavelength, m being the
particle mass. Therefore, the final goal in the density-functional formalism is to devise
an approximation scheme for calculating G,,,.

21. Second-order perturbation theory (SOT)

The simplest approach to this goal is the functional expansion of G,, in the density
difference ép () = p,(r)—p,, where p_ is the density of a uniform (liguid) reference
ocp. Although p. can be chosen arbitrarily, the simplest and most convenient way
may be to put p, = p,, where p, is given by equation (2.1). Then, to second-order
in Ap,(r) = p,(r) = p,, as in the original work [1], Age, (o)) = FGule]/N (N =
p,V) is given by

Baexlp] = Baulp,) — = far [ar Crellr — 7' ) Ap(r)Ap(r') (2.6)
2N ,

where g, (p,) is the excess free energy per particle of the uniform OCP with density p,
and Cyy is the non-Coulombic part of the direct correlation function (DCF) defined

Cr'.l\iC( lf‘ - ‘J!; Ps) = —{ézﬁcex[ps]/‘Sps(r)éps('r!)ﬂp,(r):p, . (2'7)

The total excess free energy per particle, f, [p.] = g lp.] + f.clpd with f [p] =
E_lp /N, is then given by

1
ﬂfex[ps] = ﬁfex(ps) - :?“ﬁ/dr /dr’ C(I‘I“ - T’I; PS)APB(T)APS(T") (2'8)
where C(r; p,) is the DCF and related to its non-Coulombic part Cye(7; p,) by

Ce(ri pg) = C(rs p,) + Bo(r). 29)

Note that, for a uniform ocp, f,, vanishes and 50 f,, = g,,.
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2.2. Generalized effective-liquid approximation (GELA)

Moroni and Senatore [24] formulated a modified version of the GELA for jellium,
which is appropriate to treat the Wigner crystailization that takes place at extremely
low density. For the classical ocp, however, the original formulation of Lutsko and
Baus [19] may be followed.

For the OCP, it is convenient to start from the definition of Cye, the non-
Coulombic part of the DCF:

Cre(r, 5[]} = —62BG [p.] /6p,(r)6p,(r"). (210)
Equation (2.10) can be converted into the integral form by parametrizing the density
as PA(") = APs("‘):

1 by
BG G le] = —fdr jdr' _/[; d)\/ﬂ dX p(P)p(*)Crclr, 75 [N p,])- {2.11)

The total excess free energy per particle is then given by

1 A
Bruled=1pl -5 [ar [ar [Cax ["ax s (meinctr, e ¥oD.
(2.12)

Then, we follow Lutsko and Baus [19] and consider the mapping of the unknown
free energy itself onto that of an effective liquid with density 5, (thermodynamic

mapping):
Bfex[ps] =ﬁfex(ﬁ1)‘ (2'13)

The density p, defined by this mapping is in general a functional of p,(r), ie.
1 = A;]p.]. Another mapping considered by them is based on the observation that
only the unknown of equation (2.12) is the DCF of the non-uniform (solid) ocp, and
it is defined by (structural mapping)

[ar [ar ompsrCnctr rstod) = [ar [ ar pr)e ) Cnollr =+l 22)
(2.14)
where Cye(lr — #'|; p,) is the non-Coulombic part of the DCF of another effective

liquid with density p,, which is also a functional of p(r): p, = p.[p.]. Then,
combining equations (2.12)-(2.14), we have

81u(p) = Brulnd ~ & far [ar [[ax [ aX o)

x Cyellr = #'[5 55{N pa])
i by
= _&[drfdr'j dzf AN Cpellr —#'l; 21N 2,])
v o 0

1 A
"fv’f dr / dr! f dA / AN Ap, (M) Ap(r)C(Ir ~#'); Bo[ N p,)).
(2.15)
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In the second step of equation (2.15), we have used the fact that 8f. [p,] can be
formally written as

praed =5 [or for [ "4 / YN Ao (m) A (Bl =), 216

For a later reference, we also note the identity

fold)\ /:d).’ h()\')=/u1d)\ (1= Xh(N) @17

valid for any function R{\).

Up to this stage, we have done nothing except define two effective liquids with
density g, and p, for a given p,(v). The basic assumption made in the GELA is that
the above two effective liquids are identical [19], ie.,

P1lps] = Balps] = Blrs)- (2.18)

With this assumption, equation (2.15) becomes an implicit equation for 5[p,], which
can be solved to give the solid excess free energy (given by either side of equation
(2.15)). This completes the formal translation of the GELA originally developed for a
non-Coulombic system into that for the ocp.

The method of solving equation (2.15) with the assumption (2.18) has been given
by Lutsko and Baus [19]. The starting point of this method is to change p,(r) to
Ap (r) in equation (2.15), which results in ‘

Afulelrol) = - [ar [ar [ da [ ae Cuclle =l el mi)

-5 for far [ do [ aet 8o, myn0, 0 C - i),
(2.19)

Then, we expand 5[Ap,] as
Alap] = 2p{l + ¢ (A —=1) +a,(X —1)2+...} (2.20)

and substitute the expansion into equation (2.19). The successive differentiations of
both sides of the resulting equation with respect to A yield a sequence of equations
which, when X is set equal to 1, can serve to determine p = p[p.] and {¢,} =
{a,[ps]} in equation (2.20). A few of these equations are given by

1 A
B1u) = (bl 5)8Sus) = 37 [ar [ar' [ax ["ax ap(manr)
x Cfr =/l ALY o.1) (:210)

1 -~
BEa(P) + (14 a) BB (3) = —(0,/5) ]O dX Ce(0; AA0,])
i
-5 far [ar jﬂ dx Ap(MAp(F)C(Ir - '|; BA])  (2.218)

2(1 + 20, + a,)p815,(8) + (1 + a,)28°B545(5) = —p,Cnc(0; 5)
_ % j dr f ar' Apy(M)Ap,(#)C()r —#'); 5) (2.21¢)
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where f1,(5) = 87, (5)/8p, JL(B) = 82£,,(P)/85%, and Cyc(0; ) is the long-
wavelength limit of the Fourier transform of Cye(r; p):

Ono(aid) = [ dr Cnolri D) explia-v). e2)

In equation (2.21a), which is nothing but equation (2.15) assuming (2.18), we have
used the result (see equation (2.16) of Lutsko and Baus [19])

—%/dr/dr' jaldA j; dA! CNC(|r—r'|;ﬁ[)-'ps])=--—ps/dr foldx f:d,\'
X Cnc(r; X' ) = (p,/8)Bfox(P)- (2.23)

In the first step of this equation we have used that pfAp ] =0for A =0, pfrp,] = p
for X = 1 and the integration over the coupling constant is path-independent in the
case of a uniform density.

2.3. Modified weighted-density approximation (MWDA)

The MWDA of Denton and Ashcroft [17] was rederived by Laird and Kroll [21] in a
different manner. This derivation is physically more transparent than the original one
of Denton and Ashcroft and can be easily extended to a Coulombic system. Moroni
and Senatore [24] actually made such an extension to derive the MWD4 for jellium.
The correspondence of this result with that for the classical oCp is immediate, once
the quantum direct correlation function K(r;p) is replaced by 8~1C(r; p) and the
exchange—correlation energy <, .(p) by fo(p). Nevertheless, it may be useful for
completeness and for later references to repeat its derivation for the OCP.

One starts from the integral form of the definition of C‘f\,‘é, the non-Coulombic
part of the one-body DCF [21]:

BGaled == [ar [ X orCfi(rirn). @249

Similarly, converting the relation §C{(r; [p])/60.(+"} = Cnc(r»5[p,]) into an
integral form, one has

1
cAried) = CRlp) + far s fo AN [0,(r") = BlCie(r,v'; Aoxd) (2.25)
where the integration path is parametrized as

pu(r) =+ Np(r) - 4] (226)

p being the density of a uniform liquid specified later. Then, substitution of equation
(2.25) into (2.24) yields

BGuled = NB1u(d) - 5 [dr [ 4 o (0o - BCxc(r, i) @27
with

1 1
Cnclr,vila]) = 2/ dA A_/{; dX Cuyelr, v’ [Apy])- (2.28)
0
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At this point, the unknown functional Cpy is approximated by an as-yet-unspecified
homogeneous two-point function X

Crelryr'ilo]) = X(Ir - v'}; 5). (2.29)

Then, one requires that the resulting approximate excess free energy functional, which
is denoted as FMWDA[5 1 satisfies the condition (thermodynamic mapping)

VPR o] = N fo (D). (2.30)

This condition implies that the sum of the second term on the right-hand side (RHS)
of equation (2.27) and the electrostatic energy SE,  [p,] vanishes, which yields

p=rp+ 5 [ar [ar AprAp e - 1) @31
with
w(r; B) = [1/X(0; B{ X (3 ) — Bo(r)} (232)

where X(0; ) is the long-wavelength limit of the Fourier transform of X(7; 3).

Finally, as in the original derivation [17], one requires that the approximate
free energy functional FXWPA[, ] produces the DCF exactly in the limit of uniform
demnsity, iLe.,

{ﬁF'e]:’(IWDA[ps]léps(r)aps(r’)}!p,(r)=p = “‘C( [‘I" - 1"!; P) (2'33)

for any p. A unique specification of the weight function w in equation (2.31) follows
from this condition [17, 24]: with p = 5 in equation (2.33), one has

w(r; p) = ~[1/2B8FL (B C(r; 8) + (2/V)BF4(B)}- (234)
Here we note the compressibility sum rule for the ocp: '
1

pCnc(058) = 1 - = —2pBfL(p) - P*BFL(H) (2.35)

Pl Txmr
where x.p is the isothermal compressibility. Using this sum rule, it is easy to show
that the result of equation (2.34) corresponds to the choice

X(r; p) = Ce(rs B) + (B V)Bfel) (2.36)

for the two-point function introduced in equation (2.29).

We note that equation (2.29) is now the basic assumption in the MWDA for
Coulombic systems and could be crucial in determining the quality of the MwDA. The
corresponding assumption for a non-Coulombic system leads to a normalized weight
function [21], which was the basic assumption in the original derivation of the MWDA
[17]: for a Coulombic system, the weight function w is not pormalized (see equation
(2.32) or (2.34)) and the original derivation cannot be followed.

Now, substitution of equation (2.34) into (2.31) yields

2p-p)BIL (D) = —= [dr [dr' Ap(r)Ap(P)C(lr - +/]; 5). 2.37)
N
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Given p,(r), equation (2.37) can be easily solved for /5 and the solid excess free
energy is obtained from equation (2.30).

The requirement (2.33) implies that the MWDA exactly reproduces the SOT result
in the limit of uniform density, where Ap = p— p, clearly vanishes. It is casy to
show that equation (2.37) is in fact consistent with this implication. To show this, we
consider a situation where the density is nearly uniform and so Ap is small. In such
a situation, from equation (2.37) we have

p—p, = BASFIT 1B FL(0,) (2.38)

where BA f3OT is the second-order term of the perturbation series and given by the
second term (including minus sign)} on the RHS of equation (2.8). Using equation
(2.38), the solid free energy Bf..[p.] = B..(5) is obtained as

BFu(B) = Blulo) + BE(0) (D= pa) = Blulp) + BAFOT.  (239)

Equation (2.39) holds exactly in the limit of uniform density and is nothing but the
SOT result given by equation (2.8). The perturbation series does not seem to converge
rapidly near freezing [10], and we may expect some difference between the MwDA
and the SOT.

We can also show the relation between the MWDA and the GELA by rewriting
equation (2.37) as

208 fo,(5) + (pu/5)0* BSe(5)

= — (o, PbCc(0:2) — 57 [ ar [ dr' Ap(r) e 7)CIr = 11 )
(2.40)

where we have used the compressibility sum rule (2.35). The MWDA equation (2.40)
results from the GELA if we disregard equations (2.21z2) and (2.216) and impose
additional constraints, a; = (p,/p)!/? — 1 and a, = —2a,, in equation (2.21c). This
correspondence between the MWDA and the GELA for the OCP is the same as that
for a non-Coulombic system [19], but it does not necessarily mean that these theories
produce similar results for the freezing of the OCP as in the case of hard-sphere
freezing [19].

3. Applications: analysis of the GELA

3.1, Prescriptions for the liguid OCcP and crystal density

The knowledge of the free energy and structural functions of the uniform liquid is

a prerequisite in the theory of freezing. For the ocCP, a very accurate expression for

the free energy is available from the MC simulations {26}:

Bfu(p) = aT44(bT 4 —efT¥¥)fd In I~[a+4(b—c)+0.4363] 1< D <160
3-1)

B(Ze)?/R,, R, being the ionic
—0.897744, b = 0.95043, ¢ =

where T is the plasma parameter defined by T’
sphere radius defined by (4% /3)R3 = 1/p, @
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0.18956 and d = —~0.81487. With this result, together with the MC result for the
BCC solid free energy (see equation (3.14)), the melting occurs at ' ~ 178 [26].
Slightly different and probably more accurate values of a, b, ¢ and d in equation
(3.1), which predict melting at I' ~ 180, have been obtained by Ogata and Ichimaru
[27]. But we did pot use this result for consistency with the prescription for the DCF
of the OCP, which is given below. Equation (3.1) may be safely used beyond I' = 160,
probably up to I' =~ 180. For I' < 1, we used the expression

BF.(p) = —0.6244T3/2 4. 0.2126T2 — 0.02451%/2 T'<1.(32)

The coefficients in this expansion were determined such that Gf,, and its first and
second derivatives are continuous at I' = 1. The excess internal energy Su.(p)
obtained from equation (3.2) is in good agreement with the Mc result for I' < 1 [26).

The DCF of the liquid ocP was calculated in the modified hypernetted-chain
(MHNC) approximation of Rosenfeld and Ashcroft [28], in which the hard-sphere
bridge function in the Percus—Yevick approximation was fitted to the compressibility
obtained from equations (3.1) and (3.2) [29]. The DCFs calculated in this way are
in good agreement with the MC results. The DCFs at all vajues of I'(I" < 180) are
involved in the applications of the GELA (see equations {3.92)-(3.9¢)). To avoid the
difficulty of repeating time-consuming computations for solving the MHNC integral
equation, we used the interpolation scheme with the use of the DCFs tabulated at
the interval of AT = 5. This scheme was proved to be very accurate because of
the scaling property of the ocp (i.e., C(r; p) is nearly proportional to I" for a given
X =r/{R)

in this work we used a sum of the Gaussians peaked at each site of a periodic
lattice for describing the solid density o (+) [30]"

p(r) = (%)3"2 Zexp[—a(r - R;)?] (3.3a)
G? |
ps(r) = psz:exp (—ﬁ) exp(z'GJ ’ 1‘) (3'3b)
i

where the {R,} denote the Bravais-lattice vectors for a chosen crystal lattice and
{G;} the corresponding reciprocal lattice vectors (RLv). With the use of the above
ps(7), the variational principle for the free energy F reduces to a minimization of
F with respect to the Gaussian width parameter «. Another popular method is
a general Fourier decomposition of p,(r), in which the amplitude of each (non-
symmetry-related) Fourier component is treated as an independent parameter. This
method has the ability to explore more realistic crystal density, but we avoided the
vse of this method because of the inconvenience in our analysis. The Gaussian and
Fourier methods have been compared in the study of the freezing transition of the
hard-sphere and Lennard-Jones systems and were found to give essentially the same
results for the phase diagram [31].

For p,(r) given by equation (3.3), we can easily obtain the expression for the
ideal-gas contribution 3g,, = 8G.,/N [16, 19], which we conveniently write as

Bgales] = Baia(ps) + BAgylesl. (34
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Here, 8g,y(p,) is the ideal-gas free energy of the uniform liquid,
Boia(p,) = In(A%p,) 1 =310 T,— 1+ In (37/%) + § In(kp T)gye 3.5)

where T, is the plasma parameter corresponding to p, and (kpT)gyy i the energy
kg T in units of the atomic Rydberg. The deviation from the uniform part is given
by [19]

BAgalpd =2 1n ("‘TRE) o (%) -3

4]

+ -;r-/dr exp(—ar?)In {Zexp[-a(R;? —2r. R,.)]} . (3.6)
J

This expression was used for aRZ > 1. We performed numerical calculations to

evaluate the last term on the RHS of (3.6) and found that this term is negligibly small

for aR? > 20 [16]. For o R? < 1, we used an approximate result [19]

BAgale) = § Nyexp(-Gi/2a) 3.7
where N, is the number of the nearest neighbours in the reciprocal space and G, is
the smalilest RLV.

With the prescriptions for the uniform liquid OCP and crystal density p.(r), the
freezing properties can be easily obtained in the approximations discussed in the pre-
vious section. We find it convenient to work in reciprocal space using equation (3.3b)
and to make use of the scaling properties of the OCP, ie., 8f(p.)} = fou(T;) and
2, C(G;,p,) = D(Y;,T,) with Y; = G; R,. Here and hereafter, E; and I'; refer to
the ionic-sphere radius and plasma parameter corresponding to p,.

The excess free energy of the solid, 87, [p,] = fox(Ty; o R2), in the SOT (equa-
tion (2.8)) is then written as

- Y;

fex(r‘s; Q’Rg) = fex(rs) Z €Xp ( 2 Rz) ‘D( Fs) (3’8)
where the prime on the summation iIldlcateS the exclusion of the term with Y, =
0(G; =0).

The GELA equations (2.212)~(2.21c) become

s e 3% o ' _ Y} ! R 3
fex(r) i (Fslr) fex(F) - ZJ: exp ( W .[0 dA (1 - A)[Fs/[‘()\)]

x D(Y;(A); (A (3.9a)
£ w1 T g f! - . ' Y7
Fal D301+ £2(E) = ~(0L/0P° [ ax Do FON-3 exp | -5

1 g -~ -
x j dx [Ty /B DT () PO) (3.9)

201+ 20, + ap) DFL(TY + (1 + 0, P[-20 7, (D) + P f (D))

R - . ' Y2\ oo .
= — (T, /T)® {DNc(O; F)'f'z exp (*2;122) D(YJ-;P)} . {39)
j £
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In these equations, f7.([') and f%(I) now represent the derivatives with respect
to I, ¥;(A) = G;R,()) = Y;[[/T()\)], and R,()) and I'(}) are the ionic-
sphere radius and plasma parameter, respectively, corresponding to 5(A) = plAp,]
(equation (2.20)). In equation (3.92) we used the identity (2.17). We retained up to
the term with a, in the expansion of equation (2.20) (third-order GELA [19]) and used
the variable v = X!/3 rather than X in the numerical integrations over the coupling
constant in equations (3.92) and (3.95), which is more efficient since D(Y;(A); I'(A))
is nearly proportional to ».

The MWDA equation can be cobtained from equation (3.9¢) by imposing the con-
straints a, = (p,/p)/? — 1 = (T, /1")3/2 — 1 and a, = —2a,, as discussed at the
end of the previous section.

3.2, Resulis in the 50T, GELA and MWDA

Figure 1 shows the results of the free-energy difference Af calculated for the BCC
crystal in the three approximation schemes: A f is defined by Af = BA flp,] =

AF(Ty; aR?) = AGig(aRE) + A (T,; «R2) (3.10)

whete Agg(aR?) = PAgglp,) (equation (34) and Af (T;aR?) =
Forl Ty @R2) = foT,) with f,,(0y; aRZ) = f.,(F') in the GELA and the MWDA.
Note that no volume (or density) change on freezing is considered in the case of the
OCP. i
As we have already mentioned in section 1, all the theories considered in this work
completely fail to predict freezing transition of the oCP: A f has no Jocal minimum
as the function of a RZ, showing no tendency to freeze into even a metastable solid.
Furthermore, of the three theories, the GELA is the worst and the SOT the best,
which is quite in contrast to the case of hard spheres. In thejr SOT, with the use
- of the Fourier method, Rovere and Tosi [8] proposed to ignore the density-wave
contributions with &, (the second-smallest RLvV of the BCC lattice), which shows
strong rigidity against freezing into the BCC lattice. Similar and physically acceptable
results are also obtained in our Gaussian method if we ignore that Fourier component
of p,(r) in equation (3.8), and such a procedure, though difficult to confirm by direct
calculation, could be interpreted as simulating higher-order terms. A similar analysis
was made by Iyetomi and Ichimaru [10] in their third-order perturbation theory, which
itself predict freezing at I' = 140: they showed that their theory can predict freezing
at I' ~ 180 if one retains only 22% of the density-wave contributions with G, in the
second-order term. These analyses suggest that the convergence of the perturbation
series j5 not sufficient even including the third-order term and, in fact, the second-
and third-order terms are comparable at freezing {10].

The stability of the solid phase in the GELA unphysically lowers as I, increases,
which is another serious aspect of the failure. The failure of the GELA can be
understood in terms of equation (3.92): the second term (including minus sign) on
the RHS of this equation is positive and very small (even for large oR2)} and the
resulting [ is only slightly smaller than T',, producing a solid excess free energy
fu(T;aR2) = f, (T) slightly smaller in magnitude than the liquid free energy
Fax(T,). As the result, the free-energy difference A f is essentially determined by
the ideal-gas contribution A g,,, which is independent of I'; and increases with o R?
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Figure 1. Comparisons of the free-energy difference  Figare 2. The Gaussian width parameter depen-

AJF (equation (3.10)) calculated in the 50T, GELA  dence of » at I'y == 180, which is defined by equa-

and MwDA at T’y = 150 and I'; = 180. tion (3.12) and specifies the relation between the
two effective liquids in the modified GELA: open
circles, obtained from the soT; filled circle, ab-
tained from the MO result for the solid ocp; full
(broken} curve, fitted to the soT value of n at
aR? = 6{aR2? = 4) and (o the MC value (filled
circle) using the parametrized function given by
equation (3.15).

(see equation (3.6)). These unfavourable features of the GELA are not specific to the
present prescriptions for the liquid DCF or p (r) but must be ascribed to the basic
assumption of this theory.

The results for A f in the MWDA and in the SOT are close to each other in the
range of small aRf, which is not accidental but a general attribute of the MWDA as
discussed in the previous section (see equation (2.39)). The deviation of the MWDA
result for A f from the SOT result increases with o R2, but this deviation is not in
such a direction as to be an improvement over the SOT. This result suggests that
higher-order terms are not properly incorporated, at least in principle, in the MWDA
in spite of its reasonable success for the freezing of hard-spheres. This unfavourable
feature of the MWDA may also be traced back to the basic requirement (equation
(2.29)) of this theory.

3.3. Analysis of the GELA

The failures of the GELA and MWDA for the OCP suggest that the basic assumptions
(or requirements) of these theories must be abandoned. In a circumstance in which it
is difficult to establish a new and more reasonable assumption from purely theoretical
considerations, an immediate task may be empirical. The GELA is easier to tackle
than the MWDA and we are concerned with the former in the following analysis.

The only assumption of the GELA is that the two effective liquids onto which the
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solid is mapped are identical (equation (2.18)). In our variational approach with the
use of equation (3.3), the SOT may be a good approximation for liquid-like solids, ie.
the ones with small width parameters o, for which we may expect a rapid convergence
of the perturbation series. We determined plasma parameters I'; and ', of the two
effective liquids with density 5, and j,, respectively, by setting both sides of equation
(2.15) equal to the solid excess free energy calculated in the SOT (equation (3.8)).
In the calculations of the second term on the RHS of equation (2.15) (or (3.9a) with
[’ =T,), we used the approximation

PaA) = A, or I,(\) = AYM3D, (3.11)

which corresponds to the so-called first-order GELA [19] and was proved to give
accurate results for liquid-like solids with small o R2. We actually confirmed that we
gain very little in using the full expansion (2.20) for the ocP and so equation (3.11)
can be used as a good approximation, especially for small o R2.

The values of f‘l and f‘2 determined in this way are larger and smaller, respec-
tively, than I'; and their deviations from I, increase with aRZ. To establish the
relationship between I"; and I',, both being functions of «R2, we used the quantity
defined by

n{aRZ) = (fl - f‘z)/fﬁ =1- f‘zlf‘r (3.12)

The values of n obtained from the SOT are shown in figure 2 (open circles). If we use .
this relation between I'; and T',, together with the approximation (3.11), in equation
(2.15), we recover the result of the SOT shown in figure 1. We also note that = 0
for the GELA.

In the absence of any theory to cstimate n for large o R2, we used the MC results
for the solid free energy. To make a connection between our variational approach and
the MC simulations, we used the Lindemann ratio +, which is defined as the mean-
square displacement divided by the nearest-neighbour distance. For the parametrized

p,(r) given by equation (3.3), v is given by
¥ = §(3/m)°|aR? (3.13)

for the BCC lattice, which is the stable structure of the solid ocp. The MC results for
+ have been given by Pollock and Hansen [32] and we used these results to obtain
corresponding values of a RZ. For the value of o R? determined in this way at each
I, we determined I, and T, by setting both sides of equation (2.15) plus the ideal-
gas free energy Bg,4[p,] (equation (3.4)) equal to the MC free energy 8fMC(p,) of
the BCC solid [26, 32]:

BM(p,) = apcels + § InTy ~ 1.8856 — 1613/T2 + 2 In(kp T)p,q (3.14)

where apcc is the Madelung constant of the BCC lattice, apee = —1.79186. In
the calculations of the second term on the RHS of equation (2.15), we also used the
approximation (3.11). The results of these calculations are summarized in table 1.
The values of n determined in this way are about 20% larger than those determined
by the sOT (see figure 2).
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Table 1. Parameters of the BCC solid ocP and of the effective liquids in the modified
GELA: =, the MC Lindemann ratio [32); o R2, the cotresponding Gaussian width parameter
(equation (3.13)); T'; and I';, plasma parameters of the effective liquids onto which solid
Ocp is mapped (see the text); n, defined by equation (3.12); A and B, the parameters
in equation (3.15) fitted to the McC value of n in this table and to the SOT value at
aR? = 6 (the values in the parentheses are fitted to the 50T value at aR? = 4).

i 7 aR? T T2 n A B

150 01673 1732 15269 14806 00303 00560 1061
160 01620 1848 16285 15792 00303 00538 1062
170 01571 1965 17300 16778 00302 00519  10.64
180 01526 2082 18315 17765 00300 00501  10.66

(0.0487)  (10.05)
200 0149 209 20342 19738 00297 00472 1072

To establish the relation between I, and T, that can be used in the whole range
of o R2, we used a parametrized function of the form

n(aR?) = Aexp(—B/aR?). (3.15)

The parameters A and B in this equation were fitted to the MC value at the corre-
sponding o R? (see table 1) and to the SOT value at a small a B2, say o R? = 6. The
results of this fitting for I'; = 180 are shown in figure 2 (full and broken curves).
The use of equation (3.15) is based on the observation that the SOT results for » can
be fitted to this equation with high accuracy.

With these results for n(a R2), we can solve equation (2.15) to obtain [, (or T))
without using the assumption (2.18). If any purely theoretical prescription could be
given to calculate such an n(a RZ), the theory would be called a modified GELA: for
simplicity, we use this terminology hereafter. We used the approximation (3.11) to
solve equation (2.15) for the consistency with the procedure used to determine I',
and I',. The free energy difference A f (equation (3.10)) calculated in this modlﬁed
GELA has now a local minimum pear the value of aR? fitted to the MC Lindemann
ratio, showing the tendency to freeze into the BCC solid (see fipure 3). The freezing
occurs at I', =~ 180 in agreement with the MC simulations [26, 27], although the
Gaussian width or Lindemann ratio at freezing slightly deviates from the prescribed
(and expected) value, shown by vertical arrows in figure 3. We note that, with our
fitting procedure, our calculations exactly reproduce the MC solid free energy at the
value of aR? fitted to the MC Lindemann ratio, but the calculated A f does not
necessarily have a (local) minimum at that value of o R2, as it does not for large T,
(see figure 3). The freezing properties such as the position of the local minimum
of Af or the Lindemann ratio calculated in our modified GELA are very sensitive
to the interpolated (or extrapolated) n(oRZ). In fact, the use of slightly different
values of A and B in equation (3.15) produces a substantial difference in the [reezing
properties as demonstrated for I'; = 180 in figure 3. These results suggest that it is
very difficult to establish, from purely theoretical considerations, a relation between
the two effective liquids in the modified GELA.

We have considered only the BCC structure in this work because our analyses are
not sufficiently advanced to aliow discussion of the relative stability of various crystal
structures.
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Figure 3. The free-energy difference A Fi {equa-
tion (3.10)) calculated in the modified GELA. Full
curves: obtained using fitted n{aR2) (equation
(3.15)), whose parameters A and B are given in
table 1; broken curve: the result for I'; = 180 ab-
tained by using slightly difierent n{ o R2) specified
by the values of A and B in the parentheses in
table 1. Note that each curve (full and broken) for
~Q = - I's = 180 corresponds to that in figure 2. The ver-
iical arrow on each curve shows the position {the
d L L 1 value of aR2) at which the solid free energy is
fitted to the MC result (see table I}

4. Summary and conclusions

We have studied the freezing of the OCp using the recently developed MWDA and
GELA, which have been proved to be successful in predicting the freezing of hard
spheres. We showed that these theories completely fail to predict freezing of the
ocCp into the BCC solid phase, which could have been anticipated from their failures
for the soft-sphere systems [20, 21]. The present study has been primarily concerned
. with the analysis of these failures and with possible modifications. The results of our
analysis are summarized as in the following.

-(i) While the MWDA exactly reproduces the SOT result for the free energy in the
limit of uniform density, it does not improve over the SOT for non-uniform densities
in the case of the OCP. This result suggests that higher-order terms are not properly
taken into account in the MWDA and its reasonable success for the freezing of hard
spheres must be viewed as a sort of accident [23].

(i} The formal relation between the GELA and the MWDA for the OCP is the same
as that for non-Coulombic systems [19], but these theories give quite different results
for the stability of the solid ocp, with much worse results in the GELA (figure 1).

(iii) It is clear that the basic assumptions in the GELA and the MWDA are re-
sponsible for the failure of these theories and must be subject to modification. The
modification of the GELA is easier to implement and we have made a semi-empirical
analysis of this theory using the SOT and MC results for the solid ocp. This analysis
has shown that the two effective liquids, which are assumed to be identical in the
GELA, must differ from each other by about 3% in the coupling constant (10% in
the density) near the freezing in a successful theory (modified GELA). The analysis
also suggests that it is very difficult to develop such a successful theory from purely
theoretical considerations.
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